skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Groisman, Pavel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Changes in river runoff resources, volumes of water intake from surface water sources, and discharge of wastewater into them under contemporary global warming in the basins of the Volga–Kama and Angara–Yenisei reservoirs were analyzed by comparison with the base period, characterized by colder climatic conditions and the largest volumes of water intake and wastewater discharge. The water stress index (WSI) and the index of reciprocal dilution of polluted wastewater (RDI) were examined to reveal features of the change in the water-industry load on river runoff resources in reservoir basins during the period of contemporary global warming (compared to the previous base period) as a result of climate change combined with changes in the volumes of water intake and discharge of polluted wastewater. Both indices were calculated relative to the annual free flow for years of average river flow and the flow of low-water years. The dilution factor was estimated relative to the annual total flow. 1. The basins of the Volga–Kama reservoirs are characterized by a higher level of water-industry load, which is especially noticeable in the significantly lower RDI. 2. When calculating the dilution factor relative to the annual total flow, the level of water-industry load turns out to be much lower both in the base period and in the period of contemporary global warming. 3. At the same time, under global warming conditions, the dilution level of polluted wastewater in the basins of all reservoirs exceeds the minimum required level. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  2. Wildfires significantly influence the environmental distribution of various elements through their fire-induced input and mobilization, yet little is known about their effects on the forest floor in Siberian forests. The present study evaluated the effects of spring wildfires of various severities on the levels of major and minor (Ca, Al, Fe, S, Mg, K, Na, Mn, P, Ti, Ba, and Sr) trace and ultra-trace (B, Co, Cr, Cu, Ni, Se, V, Zn, Pb, As, La, Sn, Sc, Sb, Be, Bi, Hg, Li, Mo, and Cd) elements in the forest floors of Siberian forests. The forest floor (Oi layer) samples were collected immediately following wildfires in Scots pine (Pinus sylvestris L.), larch (Larix sibirica Ledeb.), spruce (Picea obovata Ledeb.), and birch (Betula pendula Roth) forests. Total concentrations of elements were determined using inductively coupled plasma–optical emission spectroscopy. All fires resulted in a decrease in organic matter content and an increase in mineral material content and pH values in the forest floor. The concentrations of most elements studied in a burned layer of forest floor were statistically significantly higher than in unburned precursors. Sb and Sn showed no statistically significant changes. The forest floor in the birch forest showed a higher increase in mineral material content after the fire and higher levels of most elements studied than the burned coniferous forest floors. Ca was a predominant element in both unburned and burned samples in all forests studied. Our study highlighted the role of wildfires in Siberia in enhancing the levels of geochemical elements in forest floor and the effect of forest type and fire severity on ash characteristics. The increased concentrations of elements represent a potential source of surface water contamination with toxic and eutrophying elements if wildfire ash is transported with overland flow. 
    more » « less
  3. Long-term series of annual and seasonal water flow and major ions in the Pechora River were analyzed. Long-term phases of increased and decreased water flow were identified, ranging in duration from 11 to 49 years, and the major characteristics of these phases were determined. Changes in the sequence and boundaries of contrast phases in the annual and snowmelt spring–summer flood runoff were found to coincide. The difference between the mean seasonal water runoff during the phases of increased and decreased flow varied from 12 to 41%. The ion flow values of contrast phases typically differed by 9 to 36%, which is less than for water flow. This is due to the inverse dependence between ion concentrations and water discharge. Such peculiar negative feedback stabilizes the rates of chemical denudation in the river catchments to some extent and, thus, the discharge of major ions into seas, even during significant variations in water. 
    more » « less
  4. Lake Baikal is the largest freshwater lake in the world, accounting for about 20% of the world’s fresh surface water. The lake’s outflow to the ocean occurs only via the Angara River, which has several hydroelectric power plants (HPPs) along its watercourse. The first such HPP, Irkutsk HPP, was built in 1956 and is located 60 km from the Angara River’s source. After two years, the backwater from this HPP expanded to the lake shores and began raising the Baikal Lake level. Currently, there is a dynamic balance between the new lake level, the lake inflow from its tributaries, and the Angara River discharge through the Irkutsk HPP. However, both the Angara River discharge and the Baikal Lake level were distorted by the HPP construction. Thus, to understand the changes to the lake basin over the past century, we first needed to estimate naturalized lake levels that would be if no HPP was ever built. This was an important task that allowed (a) the actual impact of global changes on the regional hydrological processes to be estimated and (b) better management of the HPP itself to be provided through future changes. With these objectives in mind, we accumulated multi-year data on the observed levels of Lake Baikal, and components of its water budget (discharge of main tributaries and the Angara River, precipitation, and evaporation). Thereafter, we assessed the temporal patterns and degree of coupling of multi-year and intra-annual changes in the lake’s monthly, seasonal, and annual characteristics. The reconstruction of the average monthly levels of Lake Baikal and the Angara River water discharge after the construction of the Irkutsk HPP was based on the relationship of the fluctuations with the components of the Lake water budget before regulation. As a result, 123-year time series of “conditionally natural” levels of Lake Baikal and the Angara River discharge were reconstructed and statistically analyzed. Our results indicated high inertia in the fluctuations in the lake level. Additionally, we found a century-long tendency of increases in the lake level of about 15 cm per 100 years, and we quantified the low-frequency changes in Lake Baikal’s water levels, the discharge of the Angara River, and the main lake tributaries. An assessment of the impact of the Irkutsk HPP on the multi-year and intra-annual changes in the Lake Baikal water level and the Angara River discharge showed that the restrictions on the discharge through the HPP and the legislative limitations of the Lake Baikal level regime have considerably limited the fluctuations in the lake level. These fluctuations can lead to regulation violations and adverse regimes during low-water or high-water periods. 
    more » « less
  5. Regional studies of precipitation changes over Europe show that its eastern part is characterized by small changes in annual precipitation and insignificant aridity trends compared to central and southern Europe. However, a frequency analysis over the past 30 years showed statistically significant increasing dryness trends in eastern Europe and an increase in the occurrence of extremely high rainfall as well as prolonged no-rain intervals during the warm season. The largest increase in aridity was observed in the western and central parts of Belarus. During 1990–2020, the frequency of dry periods doubled in all river basins along the Black, Caspian, and Baltic Sea water divide areas of eastern Europe. From 1970 to 1990, there were high streamflow rates during the winter low-flow season. Consequently, over the past 50 years, in spring, we observed here a continued decrease in maximal discharges across all river basins. In summer, we detected a statistically significant increase in the number of days with anticyclonic weather over eastern Europe, a decrease in rainfall duration by 15–20%, an increase in daily precipitation maxima by 20–30%, and an increase in the number of days with a low relative humidity by 1–4 days per decade. 
    more » « less
  6. In the rivers of the central part of the East European Plain (the Volga at Staritsa, the Oka at Kaluga, and the Don at Stanitsa Kazanskaya), long phases (10–15 years or more) of increased/decreased annual and seasonal runoff have occurred, as well as differences in the frequencies of extremely low flow conditions from the late 19th century to 2020. Phase boundaries were identified by cumulative deviation curves and statistical homogeneity. The frequencies of specific water flow values were estimated using the empirical curves of the exceedance probability of annual and seasonal water flows based on their long-term time series. In the century-long changes of rivers considered, two long contrasting phases were revealed. These phases are characterized by increased and decreased runoff of hydrological seasons. Near simultaneously, a phase of increased runoff was first observed for the freshet season. On the contrary, phases of decreased runoff were first observed for low-water seasons. The runoff phases differ significantly in duration and differences in flow. Significant differences were revealed in the frequency of low-water years for a low runoff with an exceedance probability above or equal to 75% and above or equal to 95%. 
    more » « less
  7. The vast Angara region, with an area of 13.8 million ha, is located in the southern taiga of central Siberia, Russia. This is one of the most disturbed regions by both fire and logging in northern Asia. We have developed surface and ground fuel-load maps by integrating satellite and ground-based data with respect to the forest-growing conditions and the disturbance of the territory by anthropogenic and natural factors (fires and logging). We found that from 2001 to 2020, fuel loads increased by 8% in the study region, mainly due to a large amount of down woody debris at clearcuts and burned sites. The expansion of the disturbed areas in the Angara region resulted in an increase in natural fire hazards in spring and summer. Annual carbon emissions from fires varied from 0.06 to 6.18 Mt, with summer emissions accounting for more than 95% in extreme fire years and 31–68% in the years of low fire activity. While the trend in the increase in annual carbon emissions from fires is not statistically significant due to its high interannual variability and a large disturbance of the study area, there are significantly increasing trends in mean carbon emissions from fires per unit area (p < 0.005) and decadal means (p < 0.1). In addition, we found significant trends in the increase in emissions released by severe fires (p < 0.005) and by fires in wetter, dark, coniferous (spruce, p < 0.005 and Siberian pine, p < 0.025) forests. This indicates deeper burning and loss of legacy carbon that impacts on the carbon cycle resulting in climate feedback. 
    more » « less
  8. Abstract The phases of long-lasting (more than 10–15 years) increased and decreased water flow, water temperature and heat flux values in the Northern Dvina River and the Pechora River were studied for the observation period from the 1930s to 2020. To distinguish between different phases, statistical homogeneity tests and normalized cumulative deviation curves were used. Generally, the identified phases displayed statistically significant differences between average values of the measured characteristics. During contrasting phases, the general pattern of water temperature during the warm season, water runoff and heat flux in the Northern Dvina and Pechora River Basins differed considerably. The number of the identified phases varied between the studied rivers and ranged from two to four contrasting phases in the Northern Dvina River exceeded those of the Pechora River. Consequently, the duration of the phases also varied quite significantly. The difference in mean values of the hydrological characteristics during the contrasting phases in the Northern Dvina River exceeded those of the Pechora River. The longest phases of increased and decreased heat flux nearly coincide with contrasting periods of water runoff and water temperature. The phases of simultaneous increased or decreased values of all hydrological characteristics were associated with corresponding periods of increased or decreased air temperature (on average for a year and for the open water period) and annual precipitation values. Those long-lasting phases of simultaneously increased or decreased values of river flow, heat flux, and water temperature were associated with changes of the global thermal regime, regional cryosphere variations, and long-term periods of intensification or weakening of the atmospheric circulation over the North Atlantic, characterised by variability in macrocirculation indices such as the North Atlantic Oscillation and Scandinavian circulation pattern. 
    more » « less
  9. Background. Since the mid-20th century, massive dieback of coniferous forests has been observed in the temperate and boreal zones across North America and Northern Eurasia. The first hypotheses explaining forest dieback were associated with industrial air pollution (acid rain). At the end of the century, new hypotheses emerged that supported critical climate-induced aridization to explain forest dieback. Many studies were based on the SPEI (Standardized Precipitation Evapotranspiration Index) drought index. Our goals were to investigate if the SPEI drought index was a suitable metric to reflect drought conditions in wet and moist dark-needled forests in the South Siberian Mountains (Mts) and if droughts trigger the dieback of those forests. Methods. We calculated the SPEI drought index, the annual moisture index AMI, potential evapotranspiration PET, and water balance dynamics for the period 1961–2019 for four transects in the South Siberian Mts. where decline/dieback of dark-needled Siberian pine and fir forests were identified in situ. Climate data from nine weather stations located at lower and upper elevations of each transect were used to calculate climatic index dynamics for the 1961–2019 period to identify dry and wet phases of the period. Results. Our findings showed that climatic moisture/dryness indices have rarely gone down to high risk levels during the last 60 years (1961–2019). AMI did not reach the critical limit, 2.25, characteristic of the lower border for the dark-needled taiga. SPEI values < −1.5 represent drought stress conditions for dark-needled conifers at the lower border, and these conditions occurred 3–4 times during the 60-year period. However, the annual water balance stayed positive in those years in wet and moist forests at mid-to-high elevations. Trees are known to survive occasional (1–2) dry years. We found that dark-needled conifer dieback often occurs in wet years with plentiful rain rather than in drought years. We found forest dieback was associated with the westerlies that bring atmospheric pollution from the west at 50–56 N latitudes, where the air masses cross populated regions that have widespread industrial complexes. Conclusions. We concluded that the observed decline of dark-needled conifers at middle-to-high elevations across South Siberia’s Mts was conditioned by several plausible causes, among which air pollution seems to be more credible than dry climatic conditions, as cited in the literature. Results are essential for understanding these ecosystems and others as our planet changes. Other causes and mechanisms should be further investigated, which would necessitate creating infrastructure that supports the teamwork of plant physiologists, foresters, chemists, etc. 
    more » « less